353 research outputs found

    A geometric approach to scalar field theories on the supersphere

    Full text link
    Following a strictly geometric approach we construct globally supersymmetric scalar field theories on the supersphere, defined as the quotient space S2∣2=UOSp(1∣2)/U(1)S^{2|2} = UOSp(1|2)/\mathcal{U}(1). We analyze the superspace geometry of the supersphere, in particular deriving the invariant vielbein and spin connection from a generalization of the left-invariant Maurer-Cartan form for Lie groups. Using this information we proceed to construct a superscalar field action on S2∣2S^{2|2}, which can be decomposed in terms of the component fields, yielding a supersymmetric action on the ordinary two-sphere. We are able to derive Lagrange equations and Noether's theorem for the superscalar field itself.Comment: 38 pages, 1 figur

    Observation of Feshbach resonances between two different atomic species

    Full text link
    We have observed three Feshbach resonances in collisions between lithium-6 and sodium-23 atoms. The resonances were identified as narrow loss features when the magnetic field was varied. The molecular states causing these resonances have been identified, and additional lithium-sodium resonances are predicted. These resonances will allow the study of degenerate Bose-Fermi mixtures with adjustable interactions, and could be used to generate ultracold heteronuclear molecules

    Formation Time of a Fermion Pair Condensate

    Full text link
    The formation time of a condensate of fermionic atom pairs close to a Feshbach resonance was studied. This was done using a phase-shift method in which the delayed response of the many-body system to a modulation of the interaction strength was recorded. The observable was the fraction of condensed molecules in the cloud after a rapid magnetic field ramp across the Feshbach resonance. The measured response time was slow compared to the rapid ramp, which provides final proof that the molecular condensates reflect the presence of fermion pair condensates before the ramp.Comment: 5 pages, 4 figure

    Cerenkov radiation and scalar stars

    Full text link
    We explore the possibility that a charged particle moving in the gravitational field generated by a scalar star could radiate energy via a recently proposed gravitational \v{C}erenkov mechanism. We numerically prove that this is not possible for stable boson stars. We also show that soliton stars could have \v{C}erenkov radiation for particular values of the boson mass, although diluteness of the star grows and actual observational possibility decreases for the more usually discussed boson masses. These conclusions diminish, although do not completely rule out, the observational possibility of actually detecting scalar stars using this mechanism, and lead us to consider other forms, like gravitational lensing.Comment: Accepted for publication in Class. Quantum Gra

    Observation of Bose-Einstein Condensation of Molecules

    Full text link
    We have observed Bose-Einstein condensation of molecules. When a spin mixture of fermionic Li-6 atoms was evaporatively cooled in an optical dipole trap near a Feshbach resonance, the atomic gas was converted into Li_2 molecules. Below 600 nK, a Bose-Einstein condensate of up to 900,000 molecules was identified by the sudden onset of a bimodal density distribution. This condensate realizes the limit of tightly bound fermion pairs in the crossover between BCS superfluidity and Bose-Einstein condensation.Comment: 4 pages, 3 figure

    Odd-even mass differences from self-consistent mean-field theory

    Full text link
    We survey odd-even nuclear binding energy staggering using density functional theory with several treatments of the pairing interaction including the BCS, Hartree-Fock-Bogoliubov, and the Hartree-Fock-Bogoliubov with the Lipkin-Nogami approximation. We calculate the second difference of binding energies and compare with 443 measured neutron energy differences in isotope chains and 418 measured proton energy differences in isotone chains. The particle-hole part of the energy functional is taken as the SLy4 Skyrme parametrization and the pairing part of the functional is based on a contact interaction with possible density dependence. An important feature of the data, reproduced by the theory, is the sharp gap quenching at magic numbers. With the strength of the interaction as a free parameter, the theory can reproduce the data to an rms accuracy of about 0.25 MeV. This is slightly better than a single-parameter phenomenological description but slightly poorer than the usual two-parameter phenomenological form C/A^alpha . The following conclusions can be made about the performance of common parametrization of the pairing interaction: (i) there is a weak preference for a surface-peaked neutron-neutron pairing, which might be attributable to many-body effects; (ii) a larger strength is required in the proton pairing channel than in the neutron pairing channel; (iii) pairing strengths adjusted to the well-known spherical isotope chains are too weak to give a good overall fit to the mass differences.Comment: 13 pages, 9 figure

    Regularized Kerr-Newman Solution as a Gravitating Soliton

    Full text link
    The charged, spinning and gravitating soliton is realized as a regular solution of the Kerr-Newman field coupled with a chiral Higgs model. A regular core of the solution is formed by a domain wall bubble interpolating between the external Kerr-Newman solution and a flat superconducting interior. An internal electromagnetic (em) field is expelled to the boundary of the bubble by the Higgs field. The solution reveals two new peculiarities: (i) the Higgs field is oscillating, similar to the known oscillon models, (ii) the em field forms on the edge of the bubble a Wilson loop, resulting in quantization of the total angular momentum.Comment: Final published version, essential corrections, title changed, 8 pages, one fi

    Exact inflationary solutions

    Get PDF
    We present a new class of exact inflationary solutions for the evolution of a universe with spatial curvature, filled with a perfect fluid, a scalar field with potential V±(ϕ)=λ(ϕ2±Ύ2)2V_{\pm}(\phi)=\lambda(\phi^2\pm\delta^2)^2 and a cosmological constant Λ\Lambda. With the V+(ϕ)V_+(\phi) potential and a negative cosmological constant, the scale factor experiments a graceful exit. We give a brief discussion about the physical meaning of the solutions.Comment: 10 pages, revtex file, 6 figures included with epsf. To be published in IJMP-

    Nuclear Tetrahedral Symmetry: Possibly Present Throughout the Periodic Table

    Full text link
    More than half a century after the fundamental, spherical shell structure in nuclei has been established, theoretical predictions indicate that the shell-gaps comparable or even stronger than those at spherical shapes may exist. Group-theoretical analysis supported by realistic mean-field calculations indicate that the corresponding nuclei are characterized by the TdDT_d^D ('double-tetrahedral') group of symmetry, exact or approximate. The corresponding strong shell-gap structure is markedly enhanced by the existence of the 4-dimensional irreducible representations of the group in question and consequently it can be seen as a geometrical effect that does not depend on a particular realization of the mean-field. Possibilities of discovering the corresponding symmetry in experiment are discussed.Comment: 4 pages in LaTeX and 4 figures in eps forma
    • 

    corecore